

DRAFT 2

CalVal Support System

CalVal SensorML Handbook

name function company *date* signature

prepared by

Serge RIAZANOFF

Engineer VisioTerra <u>Serge.Riazanoff@visioterra.com</u>

checked by

Alexandre ROBIN

Engineer Sensia Software <u>sensiasoftware@gmail.com</u>

approved by

Philippe GORYL

Project Manager ESA / ESRIN Philippe.Goryl@esa.int

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 2 of 0

CalVal SensorML Handbook

DOCUMENT STATUS SHEET

Issue	Date	Comments	Author
1.0	25/05/2007	Draft 1 - Creation of the document	S. Riazanoff

CalVal SensorML Handbook

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 3 of 0

TABLE OF CONTENTS

1	INTR	ODUCTION		
	1.1	PURPOSE OF 7	THIS DOCUMENT	
	1.2		OVERVIEW	
	1.3	APPLICABLE	DOCUMENTS	
	1.4	REFERENCE	DOCUMENTS	
	1.5		ons and Acronyms	
	1.6			
•				
2	ARCE 2.1		D RECOMMENDATIONS	
	2.1		DESCRIPTORS	
		2.1.1	Configuration management	
		2.1.1.1 2.1.1.2	Naming convention Version management	
		2.1.2	Instrument descriptor contents	
		2.1.2	SensorML	
		2.1.2.1	sml:identification	
		2.1.2.2	sml:classification	
		2.1.2.4	sml:validTime	
		2.1.2.5	sml:characteristics (Geometric Characteristics)	
		2.1.2.6	sml:characteristics (Measurement Characteristics)	
		2.1.2.7	sml:contact	
		2.1.2.8	sml:documentation	
		2.1.2.9	sml:inputs	
		2.1.2.10	sml:outputs	
		2.1.2.11 2.1.2.12	sml:components sml:parameters	
	2.2		TIONARY	
	2.2	2.2.1	Configuration management	
	2.2	2.2.2	Document structure	
	2.3		IEMAS	
		2.3.1	Configuration management	
		2.3.2	Document structure	25
3	ELEN	IENT DESCRIP	TION	
	3.1	CENTRAL WA	AVELENGTH	
	3.2	COMPONENT	·	
	3.3	NUMBER OF I	Bands	
	3.4		E PROPERTY	
	3.5			
	3.6		ESPONSE	
	3.7			
	3.8	VALIDITY TI	ME	

CalVal SensorML Handbook

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 4 of 0

LIST OF FIGURES

fig. 1 - CalVal portal logo (Brockmann Consult).	5
fig. 2 - Documents architecture.	14
fig. 3 - CalVal structure – "SensorML" element	17
fig. 4 - CalVal structure – "identification" element	17
fig. 5 - CalVal structure – "classification" element	18
fig. 6 - CalVal structure – "validTime" element	18
fig. 7 - CalVal structure – "(Geometric) characteristics" element	18
fig. 8 - CalVal structure – "(Measurement) characteristics" element	19
fig. 9 - CalVal structure – "contact" element	
fig. 10 - CalVal structure – "documentation" element	20
fig. 11 - CalVal structure – "inputs" element	20
fig. 12 - CalVal structure – "outputs" element	21
fig. 13 - CalVal structure - "components" element	22
fig. 14 - CalVal structure - "Component : identification" element	22
fig. 15 - CalVal structure - "Component : characteristics (Geometry)" element	23
fig. 16 - CalVal structure - "Component : characteristics (Measurement)" element	23
fig. 17 - CalVal structure – "Component:parameters" element	24
fig. 18 - Spectral response model.	

LIST OF TABLES

Erreur ! Aucune entrée de table d'illustration n'a été trouvée.

CalVal SensorML Handbook

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 5 of 0

1 INTRODUCTION

1.1 Purpose of this document

This document describes the way sensor should be described in the framework of calibration / validation (CalVal) activities. This project has been performed on behalf the European Space Agency under the ESA contract 19112/05/I-LG with the company Brockmann Consult, which has subcontracted the description of sensors to VisioTerra. The proposed architecture has been elaborated in strait collaboration with Alexandre ROBIN, one of the specialists of SensorML.

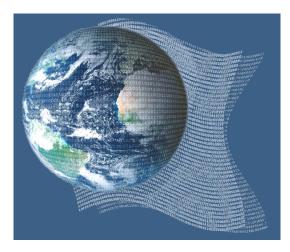


fig. 1 - CalVal portal logo (Brockmann Consult).

One of the objectives of the CalVal portal is to provide scientists with the calibration/validation methods and sensor characteristics to enable scientists to perform the comparison and inter-calibration of the instruments. Use of SensorML to describe the instruments is one of the recommendations of the CEOS WGCV (working group on calibration and validation of the Committee on Earth Observation Satellites).

In its first version, the sensor descriptions are limited to the information relative to radiometry. In its second version, the geometry description will be also encompassed.

1.2 Document overview

- Chapter 1 is the present section applicable to the overall document.
- Chapter 2 gives the architecture of SensorML CalVal documents and recommendations
- Chapter 3 details the contents of the elements in a CalVal instrument description document

1.3 Applicable documents

A-1 OGC 07-000 OpenGIS® Sensor Model Language (SensorML) Implementation Specification Version 1.0.0 – 17/07/2007 Open Geospatial Consortium Inc. http://portal.opengeospatial.org/files/?artifact_id=21273

VisioTerra	CalVal Support SystemreferenceVT-P014-DOC-002-ECalVal SensorML Handbookissue1 revision 0CalVal SensorML Handbook05/01/2008page6 of 0
A-2 OGC 99-100r1	OpenGIS® Abstract Specification Topic 0: Overview Topic 2 - Spatial Reference System, Version 4 Topic 7 – The Earth Imagery Case, Version 4 Topic 11 - Metadata (Same as ISO Metadata document 19115) Topic 12 - OGC Services Architecture, Version 4.1 Open Geospatial Consortium Inc.
A-3 OGC 03-105r1	Geographic Markup Language (GML) Implementation Specification Version 3.1.1, 19 April 2004 Open Geospatial Consortium Inc.
A-4	Namespaces in XML. W3C Recommendation 14 January 1999 http://www.w3.org/TR/1999/REC-xml-names-19990114/
A-5	XML Schema Part 1: Structures. W3C Recommendation 2 May 2001 http://www.w3.org/TR/xmlschema-1/
A-6	XML Schema Part 2: Datatypes W3C Recommendation 2 May 2001 http://www.w3.org/TR/xmlschema-2/

1.4 Reference documents

This section describes the related documents and applied conventions to be considered within the present document.

R-1	VT-P014-DOC-001-E-01-00	CalVal Support System Instrument Description Technical Note Issue 1, Revision 0 – 25/05/2007 VisioTerra
Senso	r <u>ML</u>	
R-2	Web site UAH VAST	Sensor Model Language – Overview UAH – Earth System Science Lab VAST – Global Hydrology and Climate Center <u>http://vast.uah.edu/SensorML/</u>
R-3		Sensor Model Language (SensorML) Details Presentation Mike Botts September 2007 University of Alabama in Huntsville (UAH) <u>http://vast.uah.edu/downloads/SensorML Details 2007-08-</u> 26.ppt
<u>Earth</u>	observation missions catalogs	
R-4	Web NSSDC	National Space Science Data Center, NASA's permanent archive for space science mission data NASA http://nssdc.gsfc.nasa.gov/

VisioTerra		CalVal Support System CalVal SensorML Handbook	issue date	VT-P014-DOC-002-E 1 revision 0 05/01/2008 7 of 0
R-5	Web CEOS	Earth Observation Handbook CEOS - ESA - Symbios http://www.eohandbook.com/		
R-6	Web CNES	Earth Observation Satellites & CNES http://www.space-risks.com/Sp	Sensors	ndex.php?id_page=5
R-7	Web NASA	Satellite Missions NASA http://ilrs.gsfc.nasa.gov/satellite	e_missions	s/list_of_satellites/
R-8	Web EO-Portal	Resources of Earth observation ESA http://directory.eoportal.org/res		observation.html

1.5 Abbreviations and Acronyms

This section controls the definition of all abbreviations and acronyms used within this document. Special attention has been paid to adopt abbreviations, acronyms and their definitions from international standards as ISO, ANSI or ECSS.

Many definitions laid down in the list above are extracted from the SensorML Implementation Specification (A-1).

ADEOS	Advanced Earth Observing System (Japan)
AERONET	Aerosol RObotic NETwork (NASA Goddard Space Flight Center)
AGI	Advanced Global Imager (NPP, NASA)
ALOS	Advanced Land Observing Satellite (Japan)
ALS	Airborne Laser Scanning
ANSI	American National Standards Institute
ASTER	Advanced Spaceborne Thermal Emission and Reflection Radiometer (Japan; NASA EOS)
ATSR	Along-Track Scanning Radiometer (ESA ERS)
AVHRR	Advanced Very High Resolution Radiometer (NOAA)
AVNIR	Advanced Visible and Near-Infrared Radiometer (Japan, ADEOS)
BRDF	Bidirectional Reflection Distribution Function
CAL	Calibration
CAL/VAL	Calibration and Validation
CASI	Compact Airborne Spectrographic Imager (Canada)
CCSDS	Consultative Committee for Space Data Systems
CEOS	Committee on Earth Observation Satellites
CNES	Centre National d'Études Spatiales (France)
ECSS	European Cooperation for Space Standardization
EGM96	Earth Gravity Model 1996
Envisat	ESA polar SATellite for ENVIronment monitoring

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 8 of 0

CalVal SensorML Handbook

EO	Earth Observation
EPS	EUMETSAT Polar System
ERS	European Remote Sensing satellite (ESA)
ESA	European Space Agency
ESRIN	European Space Research Institute
ETM+	Enhanced Thematic Mapper (instrument of Landsat 7)
ETRS89	European Terrestrial Reference System 1989
EUMETSAT	European Organisation for the Exploitation of Meteorological satellites
FOV	Field-of-View
GLI	Global Imager (Japan, ADEOS)
GMES	Global Monitoring for Environment and Security
GML	Geographic Markup Language
GSD	Ground Sampling Distance
GSFC	Goddard Space Flight Center (NASA)
HIRS	High Resolution Infrared Radiation Sounder
HR	Haute Résolution
HRG	Haute Résolution Géométrique (instrument de SPOT-5)
HRPT	High Resolution Picture Transmission
HRS	Haute Résolution Stéréoscopique (instrument de SPOT-5)
HRV	Haute Résolution dans le Visible (SPOT)
IASI	Infrared Atmospheric Sounding Interferometer
IFOV	Instantaneous Field Of View
IfSAR	Interferometry from SAR
IGOS	Integrated Global Observing Strategy
InSAR	Interferometry from SAR
IOCCG	International Ocean-Colour Coordinating Group
IR	Infrared
IRS	Indian Remote-Sensing Satellite
ISO	International Standards Organization
ISRF	Instrument Spectral Response Function
JERS	Japanese Earth Resources Satellite
JPL	Jet Propulsion Laboratory (USA)
LiDAR	Light Detection and Ranging
MERIS	Medium Resolution Imaging Spectrometer (ESA Envisat)
METOP	METeorological OPerational Satellite. Europe's first polar-orbiting satellite dedicated to operational meteorology
MHS	Microwave Humidity Sounder
MISR	Multiangle Imaging Spectro-Radiometer (NASA EOS)
" This document disc	loses subject matter in which VisioTerra has proprietary rights. Recipient of this document shall not duplicate

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 9 of 0

CalVal SensorML Handbook

MODIS	Moderate-Resolution Imaging Spectroradiometer (NASA EOS)
MOS	Modular Optoelectronic Scanner (Germany)
MSG	Meteosat Second Generation
NASA	National Aeronautics and Space Administration (USA)
NASDA	National Space Development Agency (Japan)
NDVI	Normalised Difference Vegetation Index
NGA	National Geospatial intelligence Agency (ex NIMA)
NIR	Near Infrared
NIST	National Institute of Standards and Technology (USA)
NOAA KLM	NOAA-K through NOAA-M polar orbiter series of satellites
NOAA	National Oceanic and Atmospheric Administration (USA)
O&M	Observations and Measurements
OCS	Optical Sciences Center (UAZ)
OCTS	Ocean Colour and Temperature Scanner (Japan, ADEOS)
OGC	Open Geospatial Consortium
OWS	OGC Web Services
PDF	Adobe TM Portable Data Format
PDF	Probability Density Function
POLDER	Polarization and Directionality of the Earth's Reflectances (CNES, ADEOS)
PRISM	Panchromatic Remote-sensing Instrument for Stereo Mapping (Japan)
PSF	Point Spread Function
QA	Quality Assurance
QC	Quality Control
RADAR	RAdio Detection And Ranging
RAL	Rutherford Appleton Laboratories (UK)
RFC	Rational Function Model
RMS	Root-Mean-Square
RPC	Rational Polynomial Coefficients
RPF	Rational Polynomial Function
SAR	Synthetic Aperture Radar
SeaWiFS	Sea-Viewing Wide Field-of-View Sensor (USA)
SensorML	Sensor Model Language
SEVIRI	Spinning Enhanced Visible and Infrared Imager (ESA)
SNR	Signal-to-Noise Ratio
SOS	Sensor Observation Service
SOW	Statement Of Work
SPOT	Système Probatoire d'Observation Terrestre (France)

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 10 of 0

CalVal SensorML Handbook

SPS	Sensor Planning Service
SRTM	Shuttle Radar Topography Mission
SWE	Sensor Web Enablement
SWIR	Short Wave Infrared
TBC	To Be Confirmed
TBD	To Be Defined
TIROS	Television Infrared Observation Satellite
ТМ	Thematic Mapper (instrument of Landsat)
TOA	Top Of the Atmosphere
UAH	University of Alabama in Huntsville
UML	Unified Modeling Language
URL	Unified Resource Locator
USA	United States of America
USGS	U.S. Geological Survey (USA)
UTM	Universal Transverse Mercator
UV	Ultraviolet
VAL	Validation
VAST	VisAnalysis Systems Technologies
VGT	SPOT-4 VEGETATION instrument (France)
VHR	Very High Resolution
VIIRS	Visible and Infrared Imaging Radiometer Suite (NPOESS)
VIRS	Visible Infrared Scanner (Japan)
VIS	Visible
VNIR	Visible and Near Infrared
W3C	World Wide Web consortium
WCRP	World Climate Research Programme (WMO)
WGCV	Working Group on Calibration and Validation (CEOS)
WGS84	World Geodetic System 1984
WLS	White light source
WMO	World Meteorological Organisation
WNS	Web Notification Service
WTF	WGISS Test Facility
XML	eXtensible Markup Language
XSL	eXtensible Stylesheet Language
XSL-FO	eXtensible Stylesheet Language - Formatting Object
XSLT	eXtensible Stylesheet Language Transformation

CalVal SensorML Handbook

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 11 of 0

1.6 Definitions

This section provides the definition of all common terms used within this document. Special attention has been paid to adopt definitions from international standards as ISO, ANSI or ECSS.

ESA also provides the following glossaries (only those interesting for this document have been selected):

- Geometry -<u>http://envisat.esa.int/dataproducts/meris/CNTR5-2-1.htm</u>,
- Optics <u>http://envisat.esa.int/dataproducts/meris/CNTR5-2-9.htm</u>,
- Product http://envisat.esa.int/dataproducts/meris/CNTR5-2-10.htm,

Many definitions laid down in the list above are extracted from the SensorML Implementation Specification (A-1).

A type of transducer that is a simple element that converts a signal to some

actuator

(CRS)

action or real world phenomenon. In SensorML a detector is a particular
type of Process Model.coordinate
reference systemA spatial or temporal framework within which a position and/or time can
be defined.

Ζ coordinate reference system S Greenwich geocentric meridian G Х reference ellipsoid coordinate reference system Greenwich meridian geographic M λ reference ellipsoid

CalVal SensorML Handbook

 reference
 VT-P014-DOC-002-E

 issue
 1 revision 0

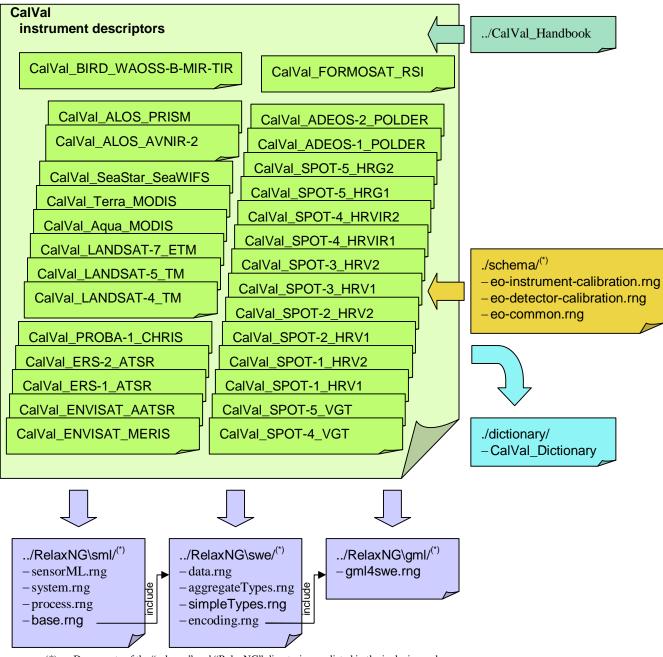
 date
 05/01/2008

 page
 12 of 0

detector	Atomic part of a composite <i>Measurement System</i> defining sampling and response characteristic of a simple detection device. A detector has only one input and one output, both being scalar quantities. More complex <i>sensors</i> such as a frame camera which are composed of multiple detectors can be described as a detector group or array using a <i>system</i> or <i>sensor</i> . In SensorML a detector is a particular type of <i>Process Model</i> .
geocoded	An image (or more generally any EO data) is geocoded if a simple relation exists giving the geodetic coordinates (λ, φ) or the Cartesian coordinates (X,Y) of a particular reference system from the coordinates of any point (l,p) of the image.
	Generally, the geodetic position is given using a simple linear formula:
	$\int X = X_0 + dx \times p$
	$\begin{cases} X = X_0 + dx \times p \\ Y = Y_0 - dy \times l \end{cases}$
	Where:
	 (X₀,Y₀) are the coordinates of the upper-left pixel in the image, (d_x,d_y) are the horizontal and vertical pixels spacing respectively.
	Note that a geocoded image is a georeferenced image in which the localisation function is the simple linear equation given here above.
georeferenced	An image (or more generally any EO data) is georeferenced if a relation exists (also called <i>localisation function</i>) giving the geodetic coordinates (λ, φ) or the Cartesian coordinates (X,Y) of a particular reference system from the coordinates of any point (l,p) of the image and from possible auxiliary data.
	$\begin{cases} X &= fx(l, p, \text{var}) \\ Y &= fx(l, p, \text{var}) \end{cases}$
	Where:
	• var are auxiliary data (ephemeris and/or attitude of the platform, characteristics of the instrument, point elevation).

location	The translational relationship of a point in space to some reference frame
location model	A model that allows one to locate objects within one reference frame (localFrame) relative to another reference frame (referenceFrame).
measurement	An instance of a procedure to estimate the value of a natural phenomenon, typically involving an instrument or sensor. This is implemented as a dynamic feature type, which has a property containing the result of the measurement. The measurement feature also has a location, time, and reference to the method used to determine the value. A measurement feature effectively binds a value to a location and to a method or instrument.
observed value	A value describing a natural phenomenon, which may use one of a variety of scales including nominal, ordinal, ratio and interval. The term is used regardless of whether the value is due to an instrumental observation, a subjective assignment or some other method of estimation or assignment.
orientation	The rotational relationship of one spatial reference frame to another.

		reference VT-P014-DOC-002-E
	CalVal Support System	issue 1 revision 0
VisioTerra	CalVal SensorML Handbook	date 05/01/2008 page 13 of 0
orthorectified	An image is orthorectified if its internal deformations due to the relief and the viewing geometry have been corrected. The orthorectified image does not exhibit parallax defects for the optical instrument or the foreshortening / layover defects caused by the radar instrument.	
phenomenon	An event or physical property that can be observed and measured, such as temperature, gravity, chemical concentration, orientation, number-of-individuals.	
position	The location and orientation of one reference frame to another.	
process model	A process that takes one or more inputs, and based on parameters and methodologies, generates one or more outputs.	
process method	Definition of the behaviour and interface of a <i>Process Model</i> . It can be stored in a library so that it can be reused by different <i>Process Model</i> instances (by using 'xlink' mechanism). It essentially describes the process interface and algorithm, and can point the user to existing implementations.	
process chain	Composite processing block consisting of interconnected sub-processes, which can in turn be <i>Process Models</i> or <i>Process Chains</i> . A process chain also includes possible data sources as well as connections that explicitly link input and output signals of sub-processes together. It also precisely defines its own inputs, outputs and parameters.	
reference frame	A coordinate system by which the position (location and orientation) of an object can be referenced.	
sample	A subset of the physical entity on which an observation is made.	
sensor	An entity capable of observing a phenome value. In SensorML, modelled as a specific complete <i>sensor</i> . This could be for examp which includes several <i>detectors</i> (one for ea	c type of <i>system</i> representing a le a complete airborne scanner
sensor model	In line with traditional definitions of the remote sensing community, a <i>sensor model</i> is a type of <i>location model</i> that allows one to georegister observations from a <i>sensor</i> (particularly remote sensors).	
(sensor) platform	An entity to which can be attached sensors or other platforms. A <i>platform</i> has an associated local coordinate frame that can be referenced to an external coordinate reference frame and to which the frames of attached sensors and platforms can be referenced.	
system	Composite model of a group or array of components, which can include detectors, actuators, or sub-systems. A system relates a process chain to the real world and therefore provides additional definitions regarding relative positions of its components and communication interfaces.	
transducer	An entity that receives a signal as input and outputs a modified signal as output. Includes <i>detectors</i> , <i>actuators</i> , and <i>filters</i> .	



CalVal SensorML Handbook

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 14 of 0

2 ARCHITECTURE AND RECOMMENDATIONS

The proposed architecture aims to be as simple as possible while enabling scientists to add their own instrument descriptors validated by a common schema and which definitions are stored in a common dictionnary.

(*) Documents of the "schema" and "RelaxNG" directories are listed in the inclusion orders.

fig. 2 - Documents architecture.

CalVal SensorML Handbook

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 15 of 0

2.1 Instrument descriptors

2.1.1 Configuration management

2.1.1.1 Naming convention

Instrument descriptors are named according to the following syntax:

CalVal_Mission_Instrument_vNN.xml

Where

- *Mission* matches an unique identifier identifying the platform carrying the instrument. This name is exactly the one given by the agency or organisation in charge of the mission using the adequate upper-case and lower-case letters. When the platform is one instance of a platform family, a sequential number is usually appended the mission family name after an hyphen character (examples: SPOT-4, Landsat-7, IRS-1D...).
- *Instrument* matches an unique identifier identifying the instrument carrying the instrument. This name is exactly the one given by the agency or organisation in charge of the mission using the adequate upper-case and lower-case letters. When the instrument is one instance of a platform family, or when more than one instrument of the same type is on-board a same platform, a sequential number is usually appended the mission family name (examples: HRV1 and HRV2 on-board SPOT-1, SPOT-2 or SPOT-3...).
- *NN* is a 2-digits version number of the CalVal description of this (mission, instrument) starting from 01.

For its first delivery, the following instrument descriptors have been released:

CalVal_ALOS_AVNIR-2_v01.xml CalVal_ALOS_PRISM_v01.xml CalVal_AQUA_MODIS_v01.xml CalVal ENVISAT AATSR v01.xml CalVal_ENVISAT_MERIS_v01.xml CalVal ERS-1 ATSR-1 v01.xml CalVal_ERS-2_ATSR-2_v01.xml CalVal_LANDSAT-4_TM_v01.xml CalVal LANDSAT-5 TM v01.xml CalVal LANDSAT-7 ETM v01.xml CalVal_PROBA-1_CHRIS_v01.xml CalVal SeaStar SeaWIFS v01.xml CalVal_SPOT-1_HRV1_v01.xml CalVal_SPOT-1_HRV2_v01.xml CalVal_SPOT-2_HRV1_v01.xml CalVal SPOT-2 HRV2 v01.xml CalVal_SPOT-4_HRVIR1_v01.xml CalVal_SPOT-4_HRVIR2_v01.xml CalVal_SPOT-5_HRG1_v01.xml CalVal_SPOT-5_HRG2_v01.xml CalVal_TERRA_MODIS_v01.xml

CalVal SensorML Handbook

2.1.1.2 Version management

Any change in the contents of a instrument descriptor will produce a new version of the document. Versioning is simply managed incrementing the 2-digits version number and adding a record in the "HISTORY OF MODIFICATIONS" header.

The "COPYRIGHT NOTICE" shall be reproduced adding the name, company and e-mail address of the contributor(s).

</th

You may modify, distribute or copy this file provided that the present notice is kept intact and the name of the initial developer(s) and all contributors are preserved. Do not hesitate to contact the developers for more information.
Initial Developers: Alexandre Robin - Sensia Software LLC <alex.robin@sensiasoftware.com> Serge Riazanoff - VisioTerra SARL <serge.riazanoff@visioterra.fr></serge.riazanoff@visioterra.fr></alex.robin@sensiasoftware.com>
Contributors:

2006-12-19: Creation of First Version
2007-05-19: Updated to validate with SensorML schema v1.0
2007-08-03: Changed hierarchy of camera outputs
>

2.1.2 Instrument descriptor contents

2.1.2.1 SensorML

The SensorML element is the root of the description. Each instrument is described as a "member". Because Earth observation instruments are almost always composed of more than one camera and/or more than one CCD array, the description is done through "components". Measurements performed by the components are listed in the "outputs" element.

CalVal SensorML Handbook

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 17 of 0

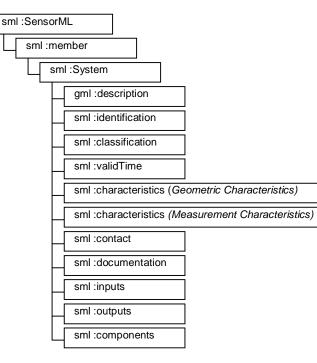


fig. 3 - CalVal structure – "SensorML" element

2.1.2.2 sml:identification

The "gml:description" is completed by a SensorML identification giving the UID of the system, a short and a long name of the instrument and the name of the mission.

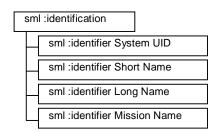


fig. 4 - CalVal structure – "identification" element

CalVal SensorML Handbook

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 18 of 0

2.1.2.3 sml:classification

Scope of the classification is to provide with generic classes that will enable further automatic processing of the measurements for this instrument.

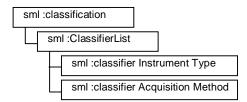


fig. 5 - CalVal structure – "classification" element

2.1.2.4 sml:validTime

Validity time is the only one of the three constraints (securityConstraints, validTime, and legalConstraints) that has been kept for the description of the instruments.

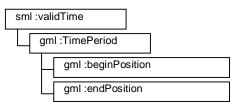


fig. 6 - CalVal structure – "validTime" element

2.1.2.5 sml:characteristics (Geometric Characteristics)

This block of information gives high-level characteristics of the instrument geometry (for example the swath width).

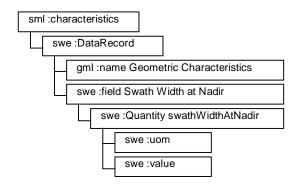


fig. 7 - CalVal structure – "(Geometric) characteristics" element

CalVal SensorML Handbook

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 19 of 0

2.1.2.6 sml:characteristics (Measurement Characteristics)

This block of information gives high-level characteristics of the measurement (for example the number of bands).

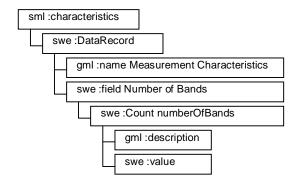


fig. 8 - CalVal structure – "(Measurement) characteristics" element

2.1.2.7 sml:contact

This block of information provides with the name and address of the agency in charge of the mission and the with the person to contact in the framework of calibration-validation activities.

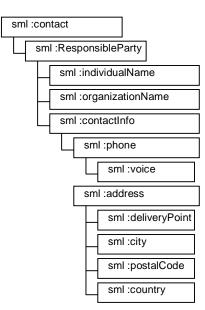


fig. 9 - CalVal structure – "contact" element

issue 1 revision 0 date 05/01/2008 CalVal SensorML Handbook page 20 of 0

reference VT-P014-DOC-002-E

2.1.2.8 sml:documentation

Scope of this element is to provide with the description and link of the document(s) describing the instrument, its physical characteristics, its measurements and possibly products.

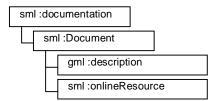


fig. 10 - CalVal structure – "documentation" element

2.1.2.9 sml:inputs

Input of an Earth observation instruments is the observable property measured by this instrument.

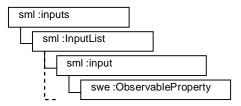


fig. 11 - CalVal structure – "inputs" element

CalVal SensorML Handbook

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 21 of 0

2.1.2.10 sml:outputs

This block defines the output(s) of the instrument. One instrument may be composed of different parts (for example more than one camera or more than one CCD array). Depending on the level of the description, one may detail one "sml:output" per part or an unique component considering the data processing that leads to a "virtual" unit (for example an unique CCD array resampling the measurements).

In the same way, the spectral bands acquired by the instrument will to the definition of different "swe:field" elements (one per band).

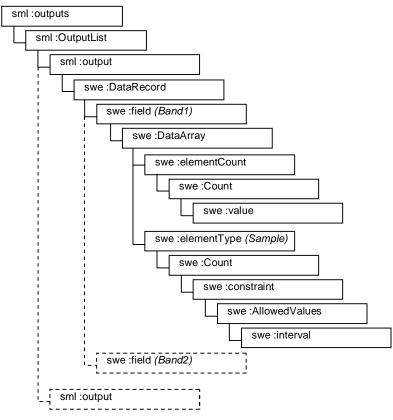


fig. 12 - CalVal structure – "outputs" element

2.1.2.11 sml:components

Components of the instrument are fully described in the "components" block. According to SensorML, this block gives the identification, characteristics and parameters of each component.

In the framework of the CalVal project, characteristics are divided in "Geometric" and "Measurement" features.

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 22 of 0

CalVal SensorML Handbook

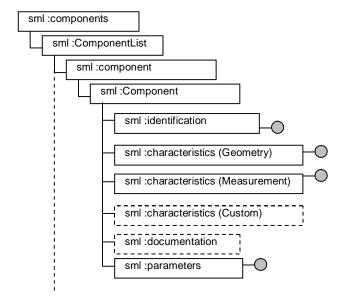


fig. 13 - CalVal structure – "components" element

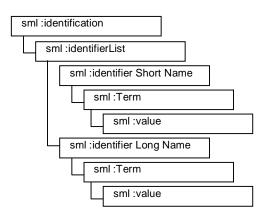


fig. 14 - CalVal structure – "Component : identification" element

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 23 of 0

CalVal SensorML Handbook

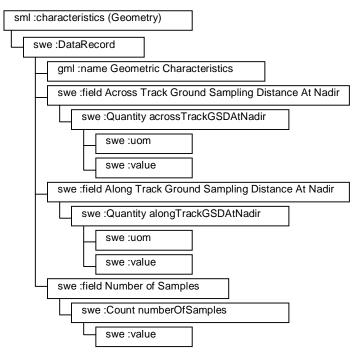


fig. 15 - CalVal structure – "Component : characteristics (Geometry)" element

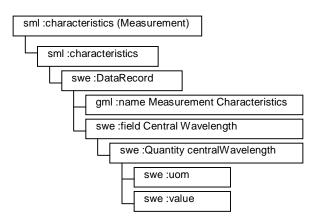


fig. 16 - CalVal structure – "Component : characteristics (Measurement)" element

2.1.2.12 sml:parameters

The "parameters" blocks give the values that will enable analyzing how measurements have been acquired and processed in the CalVal context.

CalVal SensorML Handbook

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 24 of 0

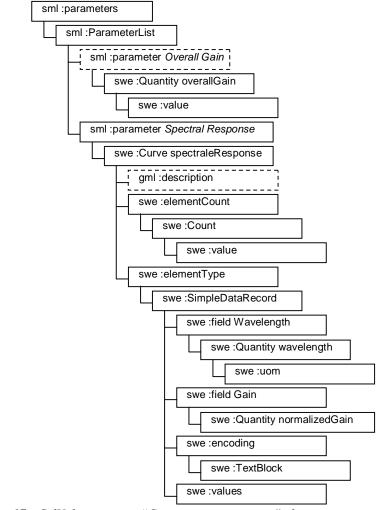


fig. 17 - CalVal structure – "Component:parameters" element

2.2 CalVal dictionary

2.2.1 Configuration management

2.2.2 Document structure

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 25 of 0

CalVal SensorML Handbook

2.3 CalVal schemas

2.3.1 Configuration management

2.3.2 Document structure

CalVal SensorML Handbook

3 ELEMENT DESCRIPTION

This section is an enhanced and formatted version of the information to be found in the "CalVal_Dictionary".

3.1 Central Wavelength

Attention au Smile effect -> C'est une MEAN Central Wavelength

Note that the central wavelength is not always given for all the instruments. One may compute this central wavelength λ_C from the spectral response values $R[\lambda_i]$ using the following formula:

$$\lambda_{C}(k) = \frac{\sum_{i=1}^{n_{k}} \lambda_{i}(k) \times R[\lambda_{i}(k)]}{\sum_{i=1}^{n_{k}} R[\lambda_{i}(k)]}$$

Such a computation has been performed for example for the SPOT instruments. In this case, we suggest to had a comment indicating that this characteristics has not been provided by the mission manager (see example here below of the panchromatic band of the SPOT-1/HRV1 instrument).

```
<swe:field name="Central Wavelength">
    <swe:Quantity
    definition="urn:x-esa:def:phenomenon:ESA:centralWavelength">
        <swe:uom code="nm"/>
        <!-- This value has been integrated from the spectral responses -->
        <swe:value>615.90</swe:value>
        </swe:Quantity>
        </swe:field>
```

3.2 Component

3.3 Number of Bands

Band = image measurements Cas de SPOT avec le spectral mode.

Cas de SPOT-5 avd 2 bands HMA et HMB

3.4 Observable Property

The « swe:ObservableProperty » part of « sml :inputs » defines the physical phenomenon being measured by the instrument.

CalVal SensorML Handbook

reference VT-P014-DOC-002-E issue 1 revision 0 date 05/01/2008 page 27 of 0

In most of the cases, the object of the measure is "Radiation" for the passive instruments and "Backscattering" for Radar instruments.

3.5 Outputs

This block gives the outputs of the instrument.

Example here below shows the outputs (one panchromatic band and three multispectral bands) of the SPOT-1/HRV1 instrument. When a CCD array of a pushbroom instrument is concerned, the number of CCDs and the range of the digital counts shall be given.

Note that if the successive bands (XS2 and XS3 in our example) have the same characteristics as the first band (XS1), data are not copied and the characteristics are just pointed using a named xlink (here "XS_BAND_DAT").

```
< ! - -
                   System Outputs
                                                   -->
<sml:outputs>
  <sml:OutputList>
     <sml:output name="HRV1">
        <swe:DataRecord gml:id="SCANLINE_DATA">
           <swe:field name="PAN_Band">
              <swe:DataArray gml:id="PAN_BAND_DATA">
                <swe:elementCount>
                   <swe:Count>
                      <swe:value>6000</swe:value>
                   </swe:Count>
                </swe:elementCount>
                <swe:elementType name="Sample">
                   <swe:Count definition="urn:x-esa:def:phenomenon:ESA:DN">
                      <swe:constraint>
                         <swe:AllowedValues>
                           <swe:interval>0 255</swe:interval>
                         </swe:AllowedValues>
                      </swe:constraint>
                   </swe:Count>
                </swe:elementType>
              </swe:DataArray>
           </swe:field>
           <swe:field name="XS1_Band">
              <swe:DataArray gml:id="XS_BAND_DATA">
                <swe:elementCount>
                   <swe:Count>
                      <swe:value>3000</swe:value>
                   </swe:Count>
                </swe:elementCount>
                <swe:elementType name="Sample">
                   <swe:Count definition="urn:x-esa:def:phenomenon:ESA:DN">
                      <swe:constraint>
                         <swe:AllowedValues>
                           <swe:interval>0 255</swe:interval>
                         </swe:AllowedValues>
                      </swe:constraint>
                   </swe:Count>
                </swe:elementType>
              </swe:DataArray>
           </swe:field>
           <swe:field name="XS2_Band" xlink:href="#XS_BAND_DATA"/>
           <swe:field name="XS3_Band" xlink:href="#XS_BAND_DATA"/>
        </swe:DataRecord>
     </sml:output>
  </sml:OutputList>
</sml:outputs>
```


reference VT-P014-DOC-002-E em issue 1 revision 0 date 05/01/2008 page 28 of 0

CalVal SensorML Handbook

3.6 Spectral response

Table showing the spectral response of a detector by giving pairs of (wavelength, normalized response) values.

Also called "Relative Spectral Response" (RSR).

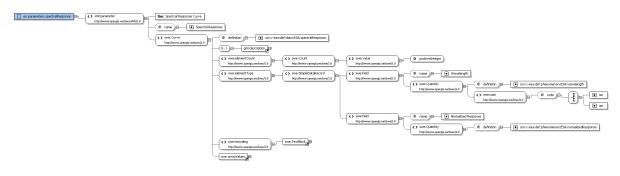


fig. 18 - Spectral response model.

3.7 System

When a sensor is complex (for example the MERIS instrument is composed of 5 cameras), one may define the SensorML member as a "System". Each part of the system (in our example, each camera of the MERIS instrument) is to be defined as an independent Component.

3.8 Validity Time

The "sml:validTime" gives the period(s) at which the measurements can be considered as valid. By default, this period starts at mission launch and ends at an "indeterminatePosition".